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Nucleolar targeting: the hub of the matter
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The nucleolus is a dynamic structure that has roles in various 
processes, from ribosome biogenesis to regulation of the cell cycle 
and the cellular stress response. Such functions are frequently 
mediated by the sequestration or release of nucleolar proteins. 
Our understanding of protein targeting to the nucleolus is much 
less complete than our knowledge of membrane-spanning trans
location systems—such as those involved in nuclear targeting—
and the experimental evidence reveals that few parallels exist 
with these better-characterized systems. Here, we discuss the 
current understanding of nucleolar targeting, explore the types of 
sequence that control the localization of a protein to the nucleo-
lus, and speculate that certain subsets of nucleolar proteins might 
act as hub proteins that are able to bind to multiple protein targets. 
In parallel to other subnuclear structures, such as PML bodies, the 
proteins that are involved in the formation and maintenance of 
the nucleolus are inexorably linked to nucleolar trafficking.
Keywords: hub protein; nucleolar localization; nucleolin; 
nucleolus; nucleophosmin
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Introduction
The nucleus is a highly ordered structure that contains non-membrane-
bound subcompartments—including PML bodies, splicing speckles, 
Cajal bodies and the nucleolus—that have specific functions. The 
nucleolus is the largest subnuclear structure (Fig 1) and is easily vis-
ible under the light microscope owing to its high refractive index. It is 
centred on rDNA repeats within the chromosomes and is traditionally 
associated with ribosome biogenesis. In mammalian cells, the number 
and activity of nucleoli vary during the cell cycle according to differing 
metabolic conditions and cell types.

The mammalian nucleolus can be morphologically divided into 
several discrete regions—the fibrillar centre (FC), the dense fibrillar 

centre (DFC) and the granular component (GC)—that have roles in 
the various steps of rRNA synthesis. The FC contains the transcription 
factor UBF and is rich in RNA polymerase I. The DFCs are associated 
with, and surround, the FCs and contain fibrillarin, an RNA methyl-
transferase and nucleolin—a protein that has multiple roles in nucleo
lar and cellular biology (Mongelard & Bouvet, 2007). Surrounding 
both the FC and the DFC is the GC, which is the site of the partial 
maturation and assembly of pre-ribosomes, accumulates NPM, and is 
enriched with ribosomal proteins and assembly factors. The GC might 
also contain regions that comprise protein complexes that are devoid 
of RNA (Politz et al, 2005).

Our understanding of nucleolar function changed markedly 
with the formulation of the plurifunctional nucleolus hypothesis 
(Pederson, 1998), which has now been underpinned by proteomic 
analysis (Boisvert et al, 2007), and proposes that the nucleolus has 
multiple functions in health and disease (Matthews & Olson, 2006; 
Stark & Taliansky, 2009). For example, there is extensive evidence 
that the nucleolus is involved in the response to cellular stress 
(Mayer & Grummt, 2005; Rubbi & Milner, 2003), and in the reg
ulation of the cell cycle and cell growth (Martindill & Riley, 2008). 
The nucleolus can also be a target for virus infection (Hiscox, 
2007) and perturbations to the nucleolus have been observed in 
a wide range of cellular diseases, from auto-immunity to cancer 
(Montanaro et al, 2008).

The regulation of many nucleolar roles is mediated by the 
sequestration or release of specific proteins, thereby providing 
insight into one of the mechanisms by which the nucleolus oper-
ates. This is illustrated by the sequestration of NF-κB (RelA) to the 
nucleolus in colorectal cancer cell lines in the presence of non-
steroidal anti-inflammatory drugs such as aspirin, which induces 
apoptosis (Thoms et al, 2007). Another implication of continuous 
protein sequestration and release is that the nucleolar proteome 
is continuously changing in response to metabolic conditions and 
driving metabolic change (Lam et al, 2007). For example, the ribo
somal—and part nucleolar—protein L23 is retained in the nucleo-
lus by NPM, thereby enhancing MIZ1-mediated cell-cycle arrest 
(Wanzel et al, 2008). NPM also sequesters the ribosomal protein 
S9 in nucleoli and directly affects ribosome biogenesis (Lindstrom 
& Zhang, 2008). The localization and stability of nucleolin—
one of the most abundant nucleolar proteins—can also change 
in response to differing metabolic conditions such as osmotic 
changes (Yang et al, 2008) and developmental stages (Bicknell  
et al, 2005). Similarly, alterations in cellular pH—for example, 
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owing to hypoxia or acidosis—have been shown to cause the 
nucleolar sequestration of the VHL protein (Mekhail et al, 2004), 
one function of which is to degrade HIF, which activates genes 
involved in tumour vascularization and oxygen homeostasis. 
Therefore, the sequestration of VHL to the nucleolus during hypoxia 
or acidosis—which is mediated by a H+-responsive nucleolar local-
ization signal (NoLS)—allows the activation of HIF until normal cel-
lular conditions are reached, which results in the release of VHL 
from the nucleolus and the subsequent inhibition of HIF function 
(Mekhail et al, 2004).

The continuous exchange of nucleolar proteins with the nucleo
plasm and cytoplasm in response to fluctuating cellular conditions 
indicates that nucleolar proteins might have specific signals or 
pathways that determine nucleolar sequestration or release.

Hub proteins in the nucleolus?
The nucleolus consists of complex protein–protein and protein–
nucleic acid interactions, and, although it is imaged as a steady-
state structure, high-throughput proteomic analysis of purified 
nucleoli coupled with live-cell imaging of fluorescently labelled 
nucleolar proteins has revealed a dynamic nuclear compartment, 
the components of which undergo continuous exchange with the 
nucleoplasm (Andersen et al, 2005; Hernandez-Verdun, 2006). 
The current human nucleolar proteome database—which has an 
estimated 80% coverage—consists of more than 4,500 proteins 
(Ahmad et al, 2009). Many nucleolar proteins interact with one 
another, and with other nuclear and cytoplasmic proteins depend-
ing on trafficking and the cell-cycle stage (Fig 2), and perturba-
tions to certain proteins in the nucleolus—either enrichment or 
ablation—have a knock-on effect on partner proteins and, hence, 

function. The nucleolus is assembled in mitosis, when nucleolin, 
NPM, fibrillarin and other factors form nucleolus-derived foci 
(Hernandez-Verdun et al, 2002). Therefore, members of a subset 
of the nucleolar proteome act as building blocks of the nucleolus 
around rDNA repeats, and it is formed in an incremental man-
ner (Dundr et al, 2000). For assembly to occur in this way, these 
blocks must bind to multiple partner molecules, thereby probably 
functioning as so-called hub proteins.

A common characteristic of hub proteins is the ability to bind 
to 10 or more distinct proteins (Krasowski et al, 2008). Hub pro-
teins have been extensively studied in Saccharomyces cerevisiae, in 
which two types have been identified (Ekman et al, 2006). Dynamic 
hub proteins are proposed to bind to different partner molecules at 
different times or subcellular locations, whereas static hubs inter-
act with most partners simultaneously. Traditionally, hub proteins 
have been thought to be important components of protein–protein 
interaction networks; however, the possibility that their capacity 
to interact with large numbers of target proteins could also have a 
structural role has so far been neglected. The nucleolus and other 
nuclear structures without membranes are dynamic, with their 
constituent proteins in constant flux. Therefore, if a hub protein is 
present in one compartment in sufficient quantity, we speculate 
that sequential transient interactions between the targeted protein 
and multiple hub proteins could be sufficient to induce a period 
of residence within the compartment. Hub proteins are known to 
facilitate interactions with a wide range of partner proteins (Kim  
et al, 2008), while retaining the ability to distinguish between suit
able partners. In this case, localization works through the recog
nition of structural or sequence-based motifs within a protein, 
which make possible its identification as a protein that must be 
retained within a specific subcellular localization.

Hub proteins might be responsible for much of the nucleo-
lar localization that occurs in the absence of protein–RNA inter
actions. Each hub protein could have different recognition 
requirements and/or multiple recognition sites, thereby explaining 
the existence of different NoLSs. This hypothesis is supported by 

Glossary

ARF	 alternative reading frame product of the CDKN2A locus
dsRNA	 double-stranded RNA
EGFP	 enhanced green-fluorescent protein
FGF2	 fibroblast growth factor 2
HIF	 hypoxia-inducible factor
HIV-1	 human immunodeficiency virus type 1
HSV-1	 herpes simplex virus type 1
HVS	 herpesvirus saimiri
MIZ1	 Myc-associated zinc-finger protein
NF-κB	 nuclear factor-κB
NOM1	 nucleolar protein with MIF4G domain 1
NPM	 nucleophosmin, also known as B23.1 (there is also an alternative 	
	 splice variant called B23.2)
NRF	 nuclear factor-κB-repressing factor
ORF	 open reading frame
PML	 promyelocytic leukaemia protein
PP1	 protein phosphatase 1 (a serine/threonine phosphatase)
PRRSV	 porcine reproductive and respiratory syndrome virus
rDNA	 ribosomal DNA
RelA	 nuclear factor-κB p65/Rel A
rRNA	 ribosomal RNA
SUMO	 small ubiquitin-like modifier
UBF	 upstream binding factor
UL24	 unique long 24
US11	 unique short 11
VHL	 von Hippel–Lindau tumour-suppressor protein
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Fig 1 | Structure of the nucleolus. (A) Live-cell laser-scanning confocal 

microscope image showing the localization of a fluorescently tagged 

nucleolar marker protein (red) with a fluorescently tagged cytoplasmic 

marker protein (green). The nucleolus constitutes a significant proportion of 

the nucleus and contains defined features. (B) Diagrammatic representation 

of the mammalian nucleolus showing the positions of the FC, DFC and GC. 

(C) Scanning electron micrograph of a nucleolus purified from HeLa cells. 

The surface corresponds to a shell of highly condensed heterochromatin 

that surrounds the nucleolus in vivo (image courtesy of Angus Lamond, 

University of Dundee, UK). DFC, dense fibrillar component; FC, fibrillar 

centre; GC, granular component.
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the observation that many of the NoLSs for which binding partners 
are known interact with the same small subset of nucleolar pro-
teins, thereby pointing to hub protein candidates, which include 
nucleolin and NPM. Whether such proteins are dynamic or static 
hubs is difficult to elucidate, and they might share characteristics 
of the two types. For example, both proteins can form multiple sta-
ble interactions throughout the cell cycle (Fig 2), which is a char-
acteristic of static hubs; however, given the transitory nature of a 
subset of the nucleolar proteome—including ribosomal proteins, 
which are exported to the cytoplasm (Andersen et al, 2005)—they 
also show characteristics of a dynamic hub protein.

Nucleolin and NPM are predicted to contain disordered 
domains in an important part of the overall protein structure—
corresponding to 55% and 47%, respectively (Fig 3)—which is a 
characteristic of hub proteins. Disordered proteins tend to have 
larger surface-to-volume ratios than ordered ones (Gunasekaran 
et al, 2003), and extensive surface areas are advantageous for 
binding to different ligands. Disordered proteins have been shown 

to interact with multiple protein or nucleic-acid partners, while 
maintaining an overall size that is two to three times smaller than 
ordered proteins (Gunasekaran et al, 2003); this characteristic 
is also advantageous for proteins that act as scaffolds for dense 
compartments such as the nucleolus, which would otherwise be 
considerably larger. Furthermore, disordered domains have been 
proposed to be involved in nucleolar protein–RNA interactions 
(Yiu et al, 2006). The known importance of nucleolin and NPM for 
the formation of nucleoli also supports their roles as hub proteins. 
As nucleoli breakdown and reform during M phase, the idea that 
such disruption could be controlled by affecting a small number  
of proteins that are crucial for maintaining the structural integ-
rity of nucleoli has obvious advantages (Ma et al, 2007). The abla-
tion of either nucleolin or NPM using RNA interference is sufficient 
to disrupt the nucleolar structure, although the exact nature of the 
disruption varies between the two proteins (Amin et al, 2008; Ma 
et al, 2007; Ugrinova et al, 2007). The depletion of NPM results 
in an accumulation of SUMOylated proteins within nucleoli (Yun  

MDM2

EIF2AK2

CDKN1A TAF1C

TAF1A

CCNA2

TAF1B

TAF1

LEF1

RIBIN

TRIM28

NOLC1

PES1

FBL
BRF1

CDKN2A

SSB

PUF60

PPYR1
EEF1B2

GTF3C1

POLR8C

RPL37

SP1

HIF1A

VHL MYCN NCL

CSNK2A1

MYC

TP53
RPS9

NPM1*

UBTF

* NPM1 includes EG:4869

Fig 2 | Pathway analysis of direct interactions between selected nucleolar proteins, and other nuclear and cytoplasmic proteins. This interaction map was generated 

using Ingenuity Pathway Analysis software (Ingenuity Systems, Inc., Redwood City, CA, USA), and shows the complexity of the interactions—many of which 

are interlinked—and how perturbations to one protein might affect the function of another. Examples of proteins that can traffic to the nucleolus and that are 

discussed in the text, such as VHL, are also shown. The full names of all of the proteins that are shown on the map can be found in supplementary Table 1 online. 

FBL, fibrillarin; NCL, nucleolin; NPM1, nucleophosmin; VHL, von Hippel–Lindau tumour-suppressor protein.
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et al, 2008), whereas the depletion of nucleolin results in the 
accumulation of cells in the G2 phase of the cell cycle, apop
tosis, centrosome-control deficiencies and nuclear deformities, 
including multiple nuclei, micronuclei and large nuclei (Ugrinova  
et al, 2007). These findings illustrate the concept of the centrality–
lethality rule, whereby the deletion of a hub protein is more likely 
to be lethal than the deletion of a non-hub protein (He & Zhang, 
2006). Indeed, transgenic-knockout studies have shown that NPM 
is essential in the maintenance of genomic stability and embryonic 
development (Grisendi et al, 2005). Similarly, genetic mutations 
that cause the cytoplasmic localization of NPM and result in the 
stabilization of c-Myc are the most frequent alterations observed 
in acute myelogenous leukaemia (Bonetti et al, 2008). Conversely, 
overexpression of NPM can also contribute to the transforming 
ability of c-Myc (Li et al, 2008). In addition, changes in nucleo
lar structure can result from virus infection (Dove et al, 2006); 
nucleolin is dispersed by the UL24 protein of HSV-1, resulting in 
the alteration of nucleolar structure (Bertrand & Pearson, 2008; 
Lymberopoulos & Pearson, 2007).

Targeting proteins to and from the nucleolus
The localization of proteins to membrane-bound compartments 
such as the nucleus is mediated by dedicated targeting systems 
that recognize specific protein motifs and vary depending on pro-
tein size, hydrodynamic radius and concentration. Many proteins 
that traffic to and from the nucleus by the nuclear-pore complex 
contain one or more nuclear localization signals (NLSs) and, if 
necessary, also nuclear export signals (NESs). These motifs are 
well characterized and moderately conserved, and can therefore  
be predicted by suitable algorithms (Cokol et al, 2000; la Cour 
et al, 2004). However, the motifs that are involved in regulating 
nucleolar localization are not well defined and it is believed that 
nucleolar localization of a protein results from either direct or indi-
rect interaction with one of the nucleolar building blocks—that is, 
with rDNA, its transcripts or protein components (Carmo-Fonseca 
et al, 2000). Therefore, rather than a targeting signal that acts as a 

recognition motif for the binding to import machinery, such signals 
would be responsible for high-affinity interactions with proteins or 
nucleic acids that reside within the nucleolus and thereby impart 
localization. Initial support for this hypothesis came from early 
studies of nucleolar proteins (Schmidt-Zachmann & Nigg, 1993); 
for example, although nucleolin was shown to contain a NLS, no 
defined NoLS could be identified, and it was therefore postulated 
that RNA-binding domains that were present within nucleolin were 
responsible for nucleolar accumulation. Similarly, other proteins 
that localize to the nucleolus might do so by binding directly to 
dsRNA, such as the NRF (Niedick et al, 2004).

Nucleolin has been shown to associate with NPM—which con-
tains a NoLS—and therefore probably transports nucleolin to the 
nucleolus (Li et al, 1996). NPM can also associate with the ARF 
tumour-suppressor protein and retarget it to the nucleolus, where 
its function is inhibited (Korgaonkar et al, 2005). Another example 
of a protein that can localize to the nucleolus in the absence of a 
specific NoLS is PP1. In this case, nucleolar localization is driven 
by the NoLS-containing nucleolar protein NOM1 (Gunawardena 
et al, 2008). The association with NPM and other nucleolar pro-
teins is also necessary for the trafficking and function of several 
viral proteins (Hiscox, 2007) such as the ORF3 protein of the plant 
umbravirus groundnut rosette virus, which associates with fibril-
larin for the formation of viral ribonucleoprotein particles, the 
nucleolar translocation of which is essential for infection (Kim  
et al, 2007).

In some cases, the NoLSs are part of the NLSs, making their iden-
tification problematic and again pointing to the lack of consensus. 
FGF2—which regulates cell proliferation—contains two NLSs and 
the carboxy-terminal one also acts as a NoLS (Sheng et al, 2004). 
The ORF57 protein of HSV contains two NLSs, both of which are 
involved in nucleolar localization (Boyne & Whitehouse, 2006). 
Parafibromin—which is a tumour-suppressor protein—contains a 
bipartite NLS and three distinct NoLSs, all of which contribute to 
the efficiency of the nucleolar localization of this protein (Hahn & 
Marsh, 2007).
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Fig 3 | Diagrammatic illustration of nucleolin and nucleophosmin. Various protein domains are highlighted, as well as the consensus results of a disorder analysis 

that was performed using several disorder predictors (see supplementary Fig 1 and supplementary Table 2 online for details of this analysis). NLS, nuclear 

localization signal.
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Several motifs have been identified that can be both necessary and 
sufficient—that is, they will direct an exogenous protein—to target 
a protein to the nucleolus; these are composed mostly of Arg or Lys 
residues. Such motifs can range in size from short sequences of seven 
or eight amino acids to approximately 30 residues (Table 1; Birbach  
et al, 2004; Reed et al, 2006). For example, studies of the NoLS of the 
human La protein and sequence alignment with other motifs indicated 
that the (R/K)(R/K)X(R/K) motif appeared once or as multiple copies in 
peptides that were targeted to the nucleolus (Horke et al, 2004); such 
motifs had been known since the discovery of NoLSs in HIV-1 and 
cellular proteins (Hatanaka, 1990; Dang & Lee, 1989). The conjug
ation of defined NoLSs to fluorescent proteins such as EGFP indicates 
that the motifs responsible for the function of a protein within the 
nucleolus can be distinct from those involved in nucleolar localiza-
tion. For example, the nucleocapsid protein of the PRRSV—which 
binds to viral RNA—travels between the nucleolus and the cytoplasm 
(Rowland et al, 1999; You et al, 2008), and has separate motifs that are 
responsible for NoLS activity and fibrillarin binding, the association to 
which might cause defects in rRNA production (Rowland et al, 2003; 
Yoo et al, 2003). Presumably, nucleolar proteins that are above the 

size exclusion limit of the nuclear pore complex might also require 
a NLS for active transport through the nuclear envelope. This might 
explain why many NLSs and NoLSs contain shared motifs, as genetic 
stability and the availability of interfaces that are accessible for inter-
action with the trafficking machinery would drive the selection for 
proximal motifs.

NoLSs might be targets for other nucleolar proteins or RNAs. In 
this regard, NPM has been shown to interact with an artificial NoLS 
to direct exogenous proteins to specific compartments within the 
nucleolus (Lechertier et al, 2007). Indeed, the fusion of the same artifi-
cial NoLS with another nucleolar protein, fibrillarin—which contains 
its own NoLS—showed that it could be retargeted from the DFC to 
the GC by conferring on fibrillarin high affinity for NPM (Lechertier 
et al, 2007). This suggests that NoLSs might have a hierarchal dom
inance in terms of directing proteins to the nucleolus and its subcom-
partments. Swapping NoLSs between viral proteins that have different 
nucleolar localization and trafficking rates has certainly illustrated that 
the NoLS can determine both of these properties, although different 
NoLS sequences might confer the same biological activity (Emmott  
et al, 2008). For example, abolishing the NoLS of the ORF57 protein of 

Table 1 | Nucleolar localization sequences

Protein NoLS sequence Position Accession number References

IBV N protein WRRQARFK 71–78 AAA46214 Reed et al, 2006

ApLLP MAKSIRSKHRRQMRMMKRE 1–19 ABY66901 Kim et al, 2003

HIV-1 TAT RKKRRQRRRAHQ 48–61 AAC82591 Siomi et al, 1990

GGNNVα RRRANNRRR 23–31 ACB21052 Guo et al, 2003

Angiogenin IMRRRGL 53–59 AAA51678 Lixin et al, 2001

HSV type 1 γ(1)34.5 MARRRRHRGPRRPRPP 1–16 P08353 Cheng et al, 2002

HIV-1 REV RRNRRRRWRERQRQI 38–52 CAA41586 Cochrane et al, 1990

FGF2 RSRKYTSWYVALKR 249–262 NP_001997 Sheng et al, 2004

MDM2 KKLKKRNK 466–473 Q00987 Lohrum et al, 2000

NIK RKKRKKK 143–149 Q99558 Birbach et al, 2004

Nuclear VCP-like protein KRKGKLKNKGSKRKK 112–126 NP_996671 Nagahama et al, 2004

p120 SKRLSSRARKRAAKRRLG 40–57 P46087 Valdez et al, 1994

HIC p40 GRCRRLANFGPRKRRRRRR 44–62 Q9P1T7 Thebault et al, 2000

MDV MEQ protein RRRKRNRDARRRRRKQ 62–78 AAB48631 Liu et al, 1997

HVS ORF57 KRPR-RRPSRPFRKP 

(a bipartite NoLS; 25 residues separate the two 
halves in wild type, but it retains its functionality 
when they are joined)

91–94, 119–128 NP_040259 Boyne &Whitehouse, 2006

LIMK2 KKRTLRKNDRKKR 491–503 CAG30399 Goyal et al, 2006

PRRSV N protein PGKKNKKKNPEKPHFP

LATEDDVRHHFTPSER

41–72 AAG13733 Rowland et al, 1999; 
Rowland et al, 2003

ApLLP, Aplysia LAPS18-like protein; FGF2, fibroblast growth factor 2; GGNNVα, betanodavirus greasy grouper (Epinephelus tauvina) nervous necrosis virus protein α; HIC p40, 
human I-mfa domain-containing protein, p40; HIV-1 Rev, human immunodeficiency virus-1 regulator of virion protein; HIV-1 TAT, human immunodeficiency virus-1 transactivator 
of transcription protein; HVS, herpesvirus saimiri; HSV type 1 γ(1) 34.5, herpes simplex virus type 1 γ(1) 34.5 protein; IBV N, infectious bronchitis virus nucleocapsid; LIMK2, LIM 
kinases 2; MDM2, murine double minute 2 protein; MDV, Marek disease virus; MEQ, MDV Eco Q; NIK, nuclear factor-κB inducing kinase; NoLS, nucleolar localization signal; ORF57, 
open reading frame 57; PRRSV N, porcine reproductive and respiratory syndrome virus nucleocapsid; VCP, nuclear valosin-containing protein.
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HVS prevented the trafficking of intronless HVS RNA from the nucleo-
lus to the cytoplasm, yet this activity was rescued by the addition of 
the NoLS of the HIV-1 Rev protein (Boyne & Whitehouse, 2006).

Several factors might be responsible for determining the activity 
of NoLSs. Similar to the positioning of NESs, NoLSs might be situ-
ated on the exterior of the parent protein, making them available for 
interaction with other molecules that are thereby also targeted to the 
nucleolus (Horke et al, 2004). The activity of NoLSs might also be 
regulated by post-translational modifications; a notable example of 
this is found in the NoLS and NES of the HSV-1 US11 protein, which 
comprises a single shared proline-rich motif the activity of which—
to mediate nucleolar localization or nuclear export—is regulated by 
phosphorylation (Catez et al, 2002). This finding also emphasizes the 
fact that Arg and Lys residues are not the sole functional residues of 
NoLSs, as is the case with NPM, for which Trp residues were reported 
to be important (Nishimura et al, 2002). The subcellular localization 
of NPM is also controlled by SUMOylation, which occurs in close 
proximity to the NoLS motif (Liu et al, 2007) and can affect the role of 
NPM in 28S rRNA maturation (Haindl et al, 2008).

Conclusion
The use of proteomics and fluorescent live-cell imaging has rap-
idly expanded the repertoire of known nucleolar proteins and our 
understanding of their functions. These proteins might be resident in 
the nucleolus throughout interphase or their localization might be 
dependent on the metabolic state of the cell. The localization of pro-
teins to the nucleolus is undoubtedly dynamic, and requires suitable 
signalling and trafficking cascades. The challenge in understanding 
nucleolar trafficking is separating these cascades in order to build a 
complex model that illustrates nucleolar dynamics, from the begin-
ning of nucleolar assembly at the end of mitosis to the subsequent 
nucleolar disassembly at the end of cell division. The stoichiometry 
of proteins in the nucleolus is crucial for its successful functioning, as 
the release or sequestration of proteins to the nucleolus has profound 
biological consequences. The study of the nucleolar proteome has 
revealed families of proteins that localize in the nucleolus, thereby 
increasing the chances of discovering potential classes of NoLSs and 
their interacting partners. The nucleolus might be built around hub 
proteins that allow the binding of multiple protein partners, which 
could be orchestrated in a position-dependent and time-dependent 
manner, in that both localization within the nucleolus and the traf-
ficking rate could be determined by the NoLS. These NoLSs might 
be recognized by the hub nucleolar proteins, which are centred 
around the rDNA (see sidebar A). There are clearly various classes of 
NoLSs, and their identification, characterization and classification 
will undoubtedly increase our understanding of nucleolar targeting 
and formation.

Supplementary information is available at EMBO reports online 
(http://www.emboreports.org)
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